Biochemical Processes for Generating Fuels and Commodity Chemicals from Lignocellulosic Biomass
نویسندگان
چکیده
Fuels and chemicals derived from biomass are regarded as an environmentally friendly alternative to petroleum based products. The concept of using plant material as a source for fuels and commodity chemicals has been embraced by governments to alleviate dependence on the volatile petroleum market. This trend is driven not only by economics but also by social and political factors. Global warming has been associated with CO2 emissions largely originating from the combustion of fossil fuels.[1] This, together with depleting and finite carbon fossil fuel resources, and insecurity of petroleum supplies has prompted a shift towards biofuels and biomaterials.[1] The use of biomass as an economically competitive source of transport fuel was initiated by the fuel crisis in 1970 and its commercialization was led by the USA and Brazil.[2] In 2010, the USA and Brazil processing corn and sugarcane, respectively, produced 90% of the world’s bioethanol. In 2008, the “food for fuel” debate emerged sparked by concerns that the use of arable land for bioethanol and biodiesel crops was placing pressure on food demand for a growing world population.[3] In June 2011, the World Bank and nine other international agencies produced a report advising governments to cease biofuel subsidies as the use of food stock for fuel production was linked to increasing food prices.[4] Subsidies were thus ended in the USA when their Senate voted overwhelmingly to end billions of dollars in bioethanol subsidies.[5] This reform resulted in USA bioethanol plants recording losses in the first quarter of 2012[6] and is foreseen as the end of bioethanol production from corn at least in the USA.
منابع مشابه
Special issue: Application of biotechnology for biofuels: transforming biomass to biofuels
Rising energy prices and depleting reserves of fossil fuels continue to renew interest in the conversion of biomass to biofuels production. Biofuels derived from renewable feedstocks are environmentally friendly fuels and have the potential to meet more than a quarter of world demand for transportation fuels by 2050. Moreover, biofuels are expected to reduce reliance on imported petroleum, redu...
متن کاملHigh-throughput Pretreatment and Hydrolysis Systems for Screening Biomass Species in Aqueous Pretreatment of Plant Biomass
The primary barrier to low-cost biological conversion of lignocellulosic biomass to renewable fuels and chemicals is plant recalcitrance, that is to say, resistance of cell walls to deconstruction by enzymes or microbes [1,2]. However, the discovery and use of biomass species with reduced recalcitrance, when combined with optimized pretreatment processes and enzyme mixtures, could potentially i...
متن کاملBiorefining Mixed Sugars Using High Densities of Growth-arrested Corynebacteria
Research and development of renewable energies has recently regained prominence given anticipated shortages of fossil-fuel-based energies and parallel rising prices of fossil-derived fuels and chemicals. This changing economic landscape combines with environmental degradation to constitute powerful forces of change [36]. Particularly, the quantities of ethanol produced via biotechnological proc...
متن کاملSimple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals.
Lignocellulosic biomass is a plentiful and renewable resource for fuels and chemicals. Despite this potential, nearly all renewable fuels and chemicals are now produced from edible resources, such as starch, sugars, and oils; the challenges imposed by notoriously recalcitrant and heterogeneous lignocellulosic feedstocks have made their production from nonfood biomass inefficient and uneconomica...
متن کاملBiotechnology for Production of Fuels, Chemicals, and Materials from Biomass
Biological systems can convert renewable resources, including lignocellulosic biomass, starch crops, and carbon dioxide, into fuels, chemicals, and materials. Ethanol and other products are now derived from starch crops, such as corn. Enzyme-based technology is under development for conversion of lignocellulosic biomass (e.g., wood, grasses, and agricultural and municipal wastes) into fuel etha...
متن کامل